skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ding, Peng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Post-treatment variables often complicate causal inference. They appear in many scientific problems, including non-compliance, truncation by death, mediation, and surrogate endpoint evaluation. Principal stratification is a strategy to address these challenges by adjusting for the potential values of the post-treatment variables, defined as the principal strata. It allows for characterizing treatment effect heterogeneity across principal strata and unveiling the mechanism of the treatment’s impact on the outcome related to post-treatment variables. However, the existing literature has primarily focused on binary post-treatment variables, leaving the case with continuous post-treatment variables largely unexplored. This gap persists due to the complexity of infinitely many principal strata, which present challenges to both the identification and estimation of causal effects. We fill this gap by providing nonparametric identification and semiparametric estimation theory for principal stratification with continuous post-treatment variables. We propose to use working models to approximate the underlying causal effect surfaces and derive the efficient influence functions of the corresponding model parameters. Based on the theory, we construct doubly robust estimators and implement them in the R package continuousPCE. 
    more » « less
  2. Abstract Although the existing causal inference literature focuses on the forward-looking perspective by estimating effects of causes, the backward-looking perspective can provide insights into causes of effects. In backward-looking causal inference, the probability of necessity measures the probability that a certain event is caused by the treatment given the observed treatment and outcome. Most existing results focus on binary outcomes. Motivated by applications with ordinal outcomes, we propose a general definition of the probability of necessity. However, identifying the probability of necessity is challenging because it involves the joint distribution of the potential outcomes. We propose a novel assumption of monotonic incremental treatment effect to identify the probability of necessity with ordinal outcomes. We also discuss the testable implications of this key identification assumption. When it fails, we derive explicit formulas of the sharp large-sample bounds on the probability of necessity. 
    more » « less
    Free, publicly-accessible full text available July 9, 2026
  3. Free, publicly-accessible full text available April 1, 2026
  4. Free, publicly-accessible full text available April 3, 2026
  5. Abstract Rejective sampling improves design and estimation efficiency of single-phase sampling when auxiliary information in a finite population is available. When such auxiliary information is unavailable, we propose to use two-phase rejective sampling (TPRS), which involves measuring auxiliary variables for the sample of units in the first phase, followed by the implementation of rejective sampling for the outcome in the second phase. We explore the asymptotic design properties of double expansion and regression estimators under TPRS. We show that TPRS enhances the efficiency of the double-expansion estimator, rendering it comparable to a regression estimator. We further refine the design to accommodate varying importance of covariates and extend it to multi-phase sampling. We start with the theory for the population mean and then extend the theory to parameters defined by general estimating equations. Our asymptotic results for TPRS immediately cover the existing single-phase rejective sampling, under which the asymptotic theory has not been fully established. 
    more » « less
  6. Abstract Linear regression is arguably the most widely used statistical method. With fixed regressors and correlated errors, the conventional wisdom is to modify the variance-covariance estimator to accommodate the known correlation structure of the errors. We depart from existing literature by showing that with random regressors, linear regression inference is robust to correlated errors with unknown correlation structure. The existing theoretical analyses for linear regression are no longer valid because even the asymptotic normality of the least squares coefficients breaks down in this regime. We first prove the asymptotic normality of the t statistics by establishing their Berry–Esseen bounds based on a novel probabilistic analysis of self-normalized statistics. We then study the local power of the corresponding t tests and show that, perhaps surprisingly, error correlation can even enhance power in the regime of weak signals. Overall, our results show that linear regression is applicable more broadly than the conventional theory suggests, and they further demonstrate the value of randomization for ensuring robustness of inference. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  7. Summary Covariate adjustment can improve precision in analysing randomized experiments. With fully observed data, regression adjustment and propensity score weighting are asymptotically equivalent in improving efficiency over unadjusted analysis. When some outcomes are missing, we consider combining these two adjustment methods with the inverse probability of observation weighting for handling missing outcomes, and show that the equivalence between the two methods breaks down. Regression adjustment no longer ensures efficiency gain over unadjusted analysis unless the true outcome model is linear in covariates or the outcomes are missing completely at random. Propensity score weighting, in contrast, still guarantees efficiency over unadjusted analysis, and including more covariates in adjustment never harms asymptotic efficiency. Moreover, we establish the value of using partially observed covariates to secure additional efficiency by the missingness indicator method, which imputes all missing covariates by zero and uses the union of the completed covariates and corresponding missingness indicators as the new, fully observed covariates. Based on these findings, we recommend using regression adjustment in combination with the missingness indicator method if the linear outcome model or missing-completely-at-random assumption is plausible and using propensity score weighting with the missingness indicator method otherwise. 
    more » « less
  8. Measuring the effect of peers on individuals' outcomes is a challenging problem, in part because individuals often select peers who are similar in both observable and unobservable ways. Group formation experiments avoid this problem by randomly assigning individuals to groups and observing their responses; for example, do first‐year students have better grades when they are randomly assigned roommates who have stronger academic backgrounds? In this paper, we propose randomization‐based permutation tests for group formation experiments, extending classical Fisher Randomization Tests to this setting. The proposed tests are justified by the randomization itself, require relatively few assumptions, and are exact in finite samples. This approach can also complement existing strategies, such as linear‐in‐means models, by using a regression coefficient as the test statistic. We apply the proposed tests to two recent group formation experiments. 
    more » « less